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Abstract. In this article we build a solution to the well-known problem of
heat propagation from a point source. The solution was achieved through
a partially unusual and approximate approach. At a certain stage of this
development, we arrived at a linear and inhomogeneous Volterra-type integro-
differential equation for a real function, which is connected with the solution
of the heat equation by a specific integral transformation over the Fourier
transform of the increment function of temperature.

1. Introduction

Heat propagation is one of the physical processes that is standardly addressed
in traditional mathematical physics textbooks [1], [2] and in books on partial dif-
ferential equations [3], [4]. The dynamics of this propagation is contained in an
equation that has been solved for different situations, conditions and dimensions.
From the point of view of the mathematical methods used in the developments
linked to this process, we have, for example, that within the context of integral
equations [5], [6], the solution of the equation for heat propagation can be ex-
pressed, precisely, by a specific integral equation [7]. In this paper, we present an
approximate solution for the heat propagation equation, generated by a fixed-point
source inside a material medium, which makes use of an adequate integral trans-
formation, which, in turn, allows the emergence of an integro-differential equation
(Volterra, linear and inhomogeneous) for a real function, an equation that was
solved by the series method.

1.1. The heat equation. The problem presented here is to determine the func-
tion θ, of variables x, y, z, t (or, equivalently, ~r, t), which represents the temperature
increase of a linear, homogeneous and isotropic physical medium that occupies the
half space z ≤ 0 surrounding a point source of heat, located in the position (0, 0, z0)
of the reference frame considered, for t > 0,

k∇2θ(~r, t) + F (~r, t) = m
∂

∂t
θ(~r, t) (1.1)

the term F (~r, t) corresponding to the heat source, the same as, in the specific case,
is defined as,

F (~r, t) = lim
ε→0

Q(t)
ε3

,
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2 JUAN D. BULNES

so that F (~r, t)dτ represents the amount of heat generated per unit of time in the
volume element dτ around point ~r, and Q(t) is the power of the source (amount
of heat generated per unit of time).

2. Development

Let’s transform the heat-source equation. The changing functions (and vari-
ables) as a result of the transformations to be used, as well as the corresponding
notation, is summarized below:

θ(t, x, y, z) −→ θ̄(s, x, y, z) −→ Θ̄(s, α, β, z), (2.1)

In equation (1.1) above, we will successively apply (i) the Laplace transform (in
relationship to the time variable), which generates the expression,

m

∫ ∞

0

∂

∂t
θ(~r, s)e−stdt = K

(
θ̄xx + θ̄yy + θ̄zz

)
+ F̄ (~r, t),

or,

msθ̄ = K
(
θ̄xx + θ̄yy + θ̄zz

)
+ F̄ (~r, t), (2.2)

where, according to the context of the problem, it was considered that θ(t = 0) = 0,
and also the double Fourier transform (in relationship to the variables x and y),
generating the expression,

(ms

K

)
Θ̄(z, s, ~α) =

1
4π2

∫ ∞

−∞

∫ ∞

−∞
θ̄xx ei(αx + βy)dxdy +

+
1

4π2

∫ ∞

−∞

∫ ∞

−∞
θ̄yy ei(αx + βy)dxdy + Θ̄zz +

+
1

4π2K

∫ ∞

−∞

∫ ∞

−∞
F̄ (~r, s) ei(αx + βy)dxdy. (2.3)

Note that we can write,

1
4π2

∫ ∞

−∞

∫ ∞

−∞
θ̄xx ei(αx + βy)dxdy = (−iα)2Θ̄(z, s, ~α), (2.4)

where ~α = (α, β). Thus, the equation is generated,

Θ̄zz(z, s, ~α)− µ2Θ̄(z, s, ~α) + f̄(z, s, ~α) = 0, (2.5)

where,
µ2 = α2 + β2 +

ms

K
= ρ2 +

ms

K
. (2.6)

Equation (2.5) written explicitly is,

Θ̄zz(z, s, ~α) − µ2Θ̄(z, s, ~α) +
1

4π2K

∫ ∞

−∞

∫ ∞

−∞
F̄ (~r, s) ei(αx + βy)dxdy = 0, (2.7)

being,

F̄ (~r, s) = lim
ε→0

Q̄(s)
ε3

, |~r − z0k̂| < ε,

F̄ (~r, s) = 0, |~r − z0k̂| > 0, (2.8)
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Note that the condition: |~r − z0k̂| < ε, equivalent to writing,

|x| < ε, & |y| < ε & |z − z0| < ε,

The application of Fourier and Laplace transformations allowed the passage from
an equation with three partial derivatives (relative to three independent variables)
to an equation with only one partial derivative (relative to an independent vari-
able). It is clear that the corresponding inverse transformations must then be
applied.

Now let’s look at the double integral in (2.7), which can be calculated directly,
∫ ∞

−∞

∫ ∞

−∞
F̄ (~r, s) ei(αx + βy)dxdy = lim

ε→0

∫ ε

−ε

∫ ε

−ε

Q̄(s)
ε3

ei(αx + βy)dxdy =

= lim
ε→0

{
Q̄(s)

ε

∫ ε

−ε

eiαx

ε
dx

∫ ε

−ε

eiβy

ε
dy

}
= lim

ε→0

{
4Q̄(s)

ε
× sin(αε)

αε
× sin(βε)

βε

}

= 4 lim
ε→0

(
Q̄(s)

ε

)
× lim

ε→0

(
sin(αε)

αε

)
× lim

ε→0

(
sin(βε)

βε

)
= 4 lim

ε→0

(
Q̄(s)

ε

)
. (2.9)

So, we write,

f̄(z, s) =
1

π2K
lim
ε→0

(
Q̄(s)

ε

)
. (2.10)

expression that could be interpreted as corresponding to a one-dimensional heat
source.

2.1. Defining an integral transformation. We start by assuming that there
is a real function G with two independent variables, whose integral will generate,
when well defined, the transformed function θ̄. In mathematical terms, and just
as a formal expression, we write the integral transformation,

Θ̄(z, s) =
∫ q(z)

p(z)

dz′ G(z, z′, s), (2.11)

where p(z) and q(z) are values that, because they have been introduced in the
problem, can be defined (chosen) properly.

On the other hand, using the equation for Θ̄, equation (2.2), one can deduce
the corresponding equation for the function G. From (2.2) we see the need to
determine the second partial derivative of expression (2.4) with respect to the
variable z, which can be done using the ‘second fundamental theorem of calculus’,
which states,

d

dz

∫ q(z)

p(z)

dz′ G(z, z′) =
∫ q(z)

p(z)

dz′
∂G

∂z
(z, z′) + G(z, q)

dq

dz
− G(z, p)

dp

dz
, (2.12)

where it results to,

d2

dz2

∫ q(z)

p(z)

dz′ G(z, z′) =
∫ q(z)

p(z)

dz′
∂2G

∂z2
(z, z′) + 2

∂G

∂z
(z, q)

dq

dz
+

−2
∂G

∂z
(z, p)

dp

dz
+ G(z, q)

d2q

dz2
− G(z, p)

d2p

dz2
, (2.13)
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Looking at the expression above, we see that, to simplify it, it is convenient to
define q(z) and p(z) equal to z and 0, respectively; in consequence, one can write,

∂2Θ
∂z2

(z, s) =
d2

dz2

∫ z

0

dz′ G(z, z′) =
∫ z

0

dz′
∂2G

∂z2
(z, z′) + 2

∂G

∂z
(z, z′), (2.14)

expression that, after replacing it in equation (2.5), leads to the following,
∫ z

0

dz′
(

∂2G

∂z2
(z, z′)− µ2G(z′, z)

)
+ 2

∂G

∂z
(z, z) + f̄(z, s) = 0 (2.15)

In (2.15) we have a Volterra integro-differential equation, linear and inhomoge-
neous for the function G.

3. Solving the integro-differential equation

We show below that it is possible to construct a solution for equation (2.15)
which is of the “series expansion” type. Let’s suppose that, for certain coefficients
ϕn(s), for n = 1, 2, 3, ..., to be determined, and for a parameter1 L, the value of
the function G, i.e. G(z, z′, s), can be expressed by the following series,

G(z, z′, s) =
∞∑

n=1

ϕn(s) cos
(nπ

L
(z − z′)

)
, (3.1)

from which it immediately follows that,

∂G

∂z
(z, z′ = z, s) = 0,

And, as a consequence of the above, equation (2.15) is simplified to the following,
∫ z

0

dz′
(

∂2G

∂z2
(z, z′)− µ2G(z′, z)

)
+ f̄(z, s) = 0. (3.2)

Note that the development in (3.1) does not correspond to a Fourier cosine series
because from G(z, z′) the values of the coefficients ϕn(s), will not be defined; which
will define the value of G(z, z′).

Additionally, since the term f̄(z, s) is in principle known (as it is defined by the
source), it is possible to express it in terms of a suitable Fourier sine series; so, we
write,

f̄(z, s) =
∞∑

n=1

fn(s) sin
(nπ

L
z
)
, (3.3)

in which the coefficients fn(s) are determined by the expression,

fn(s) =
2
L

∫ L

0

f̄(z, s) sin
(nπ

L
z
)
dz. (3.4)

1Corresponding to the minimum distance, measured from the source, where a θ remains equal
to zero for t > 0.
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To continue in accordance to (3.2), we need to calculate a second partial derivative
and the integral of G. Through the right calculus we have,

∂G

∂z
(z, z′, s) =

∞∑
n=1

ϕn(s)
(
− nπ

L

)
sin

(nπ

L
(z − z′)

)
, (3.5)

∂2G

∂z2
(z, z′, s) =

∞∑
n=1

ϕn(s)
(
− n2π2

L2

)
cos

(nπ

L
(z − z′)

)
, (3.6)

∫ z

0

dz′
∂2G

∂z2
(z, z′, s) = −

∞∑
n=1

(
nπ

L

)
ϕn(s) sin

(nπ

L
z
)
, (3.7)

and, ∫ z

0

dz′ G(z′, z) =
∞∑

n=1

(
L

nπ

)
ϕn(s) sin

(
nπ

L
z

)
. (3.8)

Using the partial results above, expressions (3.3), (3.7) and (3.8), in (3.2), we
obtain,

−
∞∑

n=1

(
nπ

L

)
ϕn(s) sin

(
nπ

L
z

)
−

∞∑
n=1

(
µ2L

nπ

)
ϕn(s) sin

(
nπ

L
z

)
+

+
∞∑

n=1

fn(s) sin

(
nπ

L
z

)
= 0 (3.9)

the same one that, in a compact way, can be rewritten as follows,
∞∑

n=1

(
−

(nπ

L
+

µ2L

nπ

)
ϕn(s) + fn(s)

)
sin

(nπ

L
z
)
≡

∞∑
n=1

ansin
(nπ

L
z
)

= 0, (3.10)

where a simplification was made in the representation of the coefficient within the
sum that appears on the left side.

According to linear algebra, the functions {sin(nπz/L)}, for n = 1, 2, 3, ..., form
an orthonormal (and therefore linearly independent) set in the interval < 0, L >;
it follows from this that, in (3.10), an = 0, for n = 1, 2, 3..., which, in turn, allows
us to write,

an = 0 → ϕn(s) =

(
nπ

L
+

µ2L

nπ

)−1

fn(s). (3.11)

In this way, the coefficients ϕn(s) depend on the coefficients fn(s).
Next, we will calculate, precisely, the coefficients fn(s) using (2.10), (3.4) and

what we have previously assumed: that the source is of the point type and is
located in the position (0, 0, z0) of the reference frame considered. So, we wrote,

fn(s) =

(
2

π2KL

)∫ L

0

lim
ε→0

(
Q̄(s)

ε

)
sin

(nπ

L
z
)
dz,

fn(s) =

(
2Q̄(s)
π2kL

)
lim
ε→0

(
1
ε

∫ z0+ε

z0−ε

sin
(nπ

L
z
)
dz

)
. (3.12)
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where we have considered: L > z0. After doing the integral in (3.12) we get,

fn(s) =

(
2Q̄(s)
π2kL

)(
L

nπ

){
lim
ε→0

1
ε

(
cos

(nπ

L
(z0−ε)

)
−cos

(nπ

L
(z0+ε)

))}
, (3.13)

Expression that can be rewritten using trigonometric identity; so, after arranging
the terms, we have,

fn(s) =

(
4Q̄(s)
π2kL

)
sin

(
nπz0

L

){
lim
ε→0

(
L

nπε
sin

(nπε

L

))}
, n = 1, 2, 3... (3.14)

Expression (3.14) is well defined for finite values of the index “n”, but not for
values n → ∞. So, according to (3.11), we have that ϕ(n→∞)(s) is not defined
either. Consequently, to avoid inconsistencies, one must evaluate G(z, z′, s), given
by (3.1), using a large but finite number of terms (n < ∞).

In the context of the approximation defined above (when “n” only assumes
finite values) and the L parameter being finite, the following result is valid,

lim
ε→0

{(
L

nπε

)
sin

(
nπε

L

)}
= 1. (3.15)

So, expression (3.14) is,

fn(s) =

(
4Q̄(s)
π2KL

)
sin

(
nπz0

L

)
. (3.16)

Substituting (3.16) into (3.11) we have,

ϕn(s) =
1

π2K

(
4nπQ̄(s)

n2π2 + µ2L2

)
sin

(
nπz0

L

)
, (3.17)

in this way, by substituting (3.17) into (3.1), we find a well-defined expression for
G(z, z′, s),

G(z, z′, s) =
1

π2K

∞′∑
n=1

(
4nπQ̄(s)

n2π2 + µ2L2

)
sin

(
nπz0

L

)
cos

(
nπ

L
(z − z′)

)
, (3.18)

where the notation ∞′ was used to refer to an arbitrarily large number, however:
∞′ < ∞.

The expression (3.18), as already commented, is not possible to be calculated
exactly (considering every value of “n”) without introducing inconsistencies; there-
fore, that expression must evaluate to a finite number of terms (approximate so-
lution). Expression (3.18) is valid in the range < 0, L > of variable z.

Note that the function Q, which for the time being remains undefined, depends
on the source, that is, how the source generates heat over time, and that the
function Q̄ is the Laplace transform of Q.
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3.1. Formal solution of the heat equation. Replacing (3.18) into (2.11) we
have,

Θ̄(z, s) =
1

π2k

∞′∑
n=1

(
4nπQ̄(s)

n2π2 + µ2L2

)
sin

(nπz0

L

) ∫ z

0

dz′cos
(nπ

L
(z − z′)

)
, (3.19)

the same one that, after doing the integration, is like,

Θ̄(z, s) =
1

π2k

∞′∑
n=1

(
4LQ̄(s)

n2π2 + µ2L2

)
sin

(
nπz0

L

)
sin

(
nπ

L
z

)
. (3.20)

To obtain the function θ from (3.20) the corresponding inverse transformations
are applied; so, we wrote,

θ = F−1
y

{
F−1

x L−1Θ̄
}

. (3.21)

Using the fact that the two operations (Laplace transform and Fourier transform)
commute we can also write,

θ = L−1
{

F−1
y F−1

x Θ̄
}

. (3.22)

The corresponding expression for the value of the above function is written,

θ(t, x, y, z) =
1

2πi

∫ γ+i∞

γ−i∞
est

∫ ∞

−∞

∫ ∞

−∞
Θ̄(s, α, β, z)e−i(αx+βy)dαdβds (3.23)

Note, from expression (3.20), that the variables s and z of the function Θ̄ are
separated, whereas the variables α and β are coupled through the relation µ2 =
α2 + β2 + (ms/k).

The inverse (double) Fourier transform of Θ̄ is written as,

θ̄ =
∫ ∞

−∞

∫ ∞

−∞
Θ̄(s, α, β, z)e−i(αx+βy))dαdβ, (3.24)

the one that can be rewritten in terms of the Hankel transform [9],

θ̄(s, r, z) = 2π

∫ ∞

0

ρΘ̄(s, ρ, z)J0(ρr)dρ, (3.25)

where ρ2 = α2+β2, r2 = x2+y2, and J0 is the Bessel function of the first type and
of zero order. So, substituting (3.20) for (3.25) and the result, in turn, substituting
it for (3.23), we arrive at the expression,

θ(t, r, z) =
8πL

π2k

∞′∑
n=1

[
sin

(
nπz0

L

)
sin

(
nπ

L
z

)
×

×
∫ ∞

0

ρ J0(ρr)

{( 1
2πi

) ∫ γ+i∞

γ−i∞

(
estQ̄(s)

n2π2 + (ρ2 + ms
k )L2

)
ds

}
dρ

]
(3.26)

where the integral between keys takes place in the complex plane s along a
Bromwich line [8]. The expression in (3.26) represented what might be called
a formal solution to the temperature increment function, since the function Q̄(s)
remains undefined. In the next subsection we consider a specific heat source.
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3.1.1. Solution for a point source of heat. The complex integral in (3.26) will
be calculated for the particularly simple case of a point source that generates a
rectangular heat pulse during a time “a”; therefore, we can write for its Laplace
transform,

Q̄(s) =
1
s

(
1− e−as

)
. (3.27)

So, we can calculate the integral between braces in (3.26),

A ≡
( 1

2πi

) ∫ γ+i∞

γ−i∞

(
estQ̄(s)

n2π2 + ρ2L2 + mL2s
k

)
ds =

=
( 1

2πi

) ∫ γ+i∞

γ−i∞

(1− e−as)est

s(βn + αs)
ds, (3.28)

where,

βn = n2π2 + ρ2L2 & α =
mL2

k
.

On the other hand, the factor 1
/(

s(βn+αs)
)

in the integrand in (3.28) we rewrite
it as follows,

1
s(βn + αs)

=
1

αΓn

(
1
s
− 1

s + Γn

)
, (3.29)

where,

Γn =
βn

α
=

(n2π2 + ρ2L2)k
mL2

.

In this way, we come to the expression,

A =
1
βn

(
1

2πi

)∫ γ+i∞

γ−i∞

(
est

s
− est

s + Γn
− es(t−a)

s
+

es(t−a)

s + Γn

)
ds. (3.30)

The (four) integrals in (3.30), for the cases t < 0 and t > 0, are well known in the
literature dealing with the integration in the complex plane “s” along a Bromwich
line [8]. Based on this reference, we have the following result,

A =

(
1

n2π2 + ρ2L2

)
×

×
{

S(t)− S(t) e
(n2π2+ρ2L2)kt

mL2 − S(t− a) + S(t− a) e
(n2π2+ρ2L2)k(t−a)

mL2

}
, (3.31)

where S is the Heaviside function. In this way, we arrive at an expression for the
temperature increment function,

θ(t, r, z) =
8πL

π2k

∞′∑
n=1

[
sin

(
nπz0

L

)
sin

(
nπ

L
z

) ∫ ∞

0

(
ρJ0(ρr)

n2π2 + ρ2L2

)
×

×
{

S(t)−S(t) e
(n2π2+ρ2L2)kt

mL2 −S(t− a) + S(t− a) e
(n2π2+ρ2L2)k(t−a)

mL2

}
dρ

]
. (3.32)
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The integrals in (3.32), for n = 1, 2, .., can be computed computationally using
simple numerical resources, but this is not done here. Note that expression (3.32)
checks for θ(t = 0−, r, z) = 0, as expected.

4. Conclusion

We have considered the heat equation with a point source that generates a
heat pulse in a homogeneous medium. A solution was found through an approach
that used a specific integral transformation, which enabled the emergence of an
integral-differential equation of the Volterra type, linear and non-homogeneous.
The integral-differential equation was solved giving rise to an approximate solu-
tion to the heat equation. The integrals that appear in expression (3.32) for the
solution of the heat equation could easily be calculated using elementary numerical
methods, which was not done here. The approach presented could also be applied
to other equations in mathematical physics (provided that the exact corresponding
equation is not required); for example, the Helmholtz equation [10], [11], [12], [13],
[14], [15].
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