
A case of spurious quantum entanglement 
originated by a mathematical property with a non-
physical parameter  
 
 

J. D. Bulnes1, F. A. Bonk2 
1Grupo de Mecânica Quântica, Informação Quântica e Física Aplicada, 
Universidade Federal do Amapá, Rod. Juscelino Kubitschek, Km. 2, Jardim Marco Zero, 
CEP. 68903-419, Macapá, AP, Brazil. 

2Instituto de Ciências Exatas e Tecnologia, Universidade Paulista, 
 Rua Miguel Guidotti, 405, Egisto Ragazzo, CEP.13485-342, Limeira, SP, Brazil. 
 
E-mail: bulnes@unifap.br 
 
(Received 29 April 2014, accepted 17 November 2014)  
 

Abstract 
In this paper it’s build a 44×  entangled matrix with the shape of a pseudo-pure matrix,

14 4/)1( ερερε +−= I , in which 

the matrix 1ρ  also is entangled. The entanglement was identified through the Peres-Horodecki criterion, but such 
entanglement, as it’s shown, it’s not physical, but only mathematical. 
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Resumen 
En este artículo se construye una matriz entrelazada 44×  con la forma de una matriz seudopura 

14 4/)1( ερερε +−= I
en la cual la matriz 1ρ  también está entrelazada. El entrelazamiento fue identificado a través del criterio de Peres-
Horodecki, pero tal entrelazamiento, como se muestra, no es físico, sino únicamente matemático. 
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I. INTRODUCTION 
 
On this section, we briefly reviewed the concept of extended 
pseudo-pure matrix [1], to later construct a particular 
entangled matrix which includes a matrix that is also 
entangled. 

Considering only the mathematical form (but not the 
origin) of a pseudo-pure matrix, [2, 3, 4], in the case of 44×  
matrices, we write: 
 

1
4

4
)1( ερερε +−=

I ,                      (1) 

 
in which: 
ε  is a parameter with value in the interval >< 1,0 , 4I  is the 
identity matrix and 1ρ  is a density matrix.  

A generalization of the kind of the above matrix (as it 
was performed in [1]) consists of maintaining the form 
pseudo-pure and including a Hermitian matrix E

1ρ  that has 
(at least) a negative eigenvalue in the place of the density 
matrix 1ρ ; then we write: 

EE I
1

4

4
)1( ερερε +−= .                      (2) 

 
It’s evident that if the matrix E

1ρ  is chosen arbitrarily, the 
corresponding matrix E

ερ  not necessarily will be “density 
matrix” type, then, to assure that E

ερ  is always a density 
matrix, it’s necessary to impose some condition. 

Considering the fact that E
ερ  and E

1ρ commute and 
denominating ελ and 1λ  to eigenvalues of these matrices 
defined to the set de eigenvectors in common, one comes to 
the following relation, 
 

14/)1( ελελε +−= .                     (3) 
 
Therefore, imposing that 0≥ελ , one gets, 
 

εελε 4/)1( −−≥ .                            (4) 
 
The previous result would be useful if we could choose 
matrices E

1ρ  through their eigenvalues: if the previous 
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relation is satisfied, the corresponding matrix E

ερ  is a 
density matrix. Among the density matrices thus generated 
some are entangled, but it is only a mathematical 
entanglement (and not a physical entanglement), as it was 
shown in [1]. 
 
 
II. CONSTRUCTING A MATRIX WITH 
ENTANGLEMENT ‘IN WHOLE AND IN PART’  
 
Hereafter extends the context discussed in [1] and then to 
construct a case of mathematical entanglement. Let us 
consider two entangled pseudo-pure matrices 

ερ  and 
'ερ  

that are constructed starting from the same extended 
pseudo-pure matrix E

1ρ , having each one distinct value of 
its parameter, ε  and 'ε , that by now will be considered 
arbitrary. Then, it can be written, 
 

EI
1

4

4
)1( ερερε +−= .                      (5) 

 
EI

1
4

' '
4

)'1( ρεερε +−= .                     (6) 

 
The matrix E

1ρ  is chosen, necessarily, through its 
eigenvalues,λ , all of them satisfy the condition, 
 

}'4/)'1(,4/)1min{( εεεελ −−−≥ .               (7) 

 
Let’s suppose that 'εε > ; then, there is σ  in the open 
interval >< 1,0 , so that σεε =' , and the Equations (5) and 
(6) can be suitably combined to obtain: 

 

εε σρσρ +−=
4

)1( 4
'

I ,                     (8) 

 
that maintains the pseudo-pure form and where the 
Hermitian matrix E

1ρ  don’t appear anymore; we emphasize 
that in the expression (8) both 

'ερ  and 
ερ  are density 

matrices. 
Hereafter is presented a numerical example of matrices 

of the type described above. In the open interval 
>+−< 55,60 , which was numerically identified, are 

selected randomly several sets of fifteen numbers, jiC ,
, to 

which we add the element 
1,1C , with fixed value equal to 

one. One of these sets of numbers was ordered in the 
following matrix, 
 
 



















+++−
−−++
−+−+
−−−

=

4070,238948,393318,528384,11
6334,530052,517877,331401,9
4624,537585,399316,294872,18
6227,234681,216958,141

C
.   (9) 

 
The numbers jiC ,

, elements of the previous matrix, will be 
considered as independent coefficients of the expansion of 
a matrix E

1ρ  at the basis of Pauli density matrices. Then it’s 
written, 
 

ji
ji

ji
E C σσρ ⊗= ∑

=

4

1,
,1 4

1 ,                  (10) 

 
finding the Hermitian matrix, 

------------------------------------------------------------------------------- 
 



















+−−++++
+−−−−−−
−++−−++
−++−−+−

=

9670,143407,157569,166934,159874,173865,182684,5
3407,157569,165478,84927,12342,201233,117438,8
6934,159874,174927,12342,206557,26067,44090,9
3865,182684,51233,117438,86067,44090,97635,2

1

iii
iii
iii
iii

Eρ
,                    (11) 

 
that has trace equal to one and presents the following eigenvalues: -28,1068, -17,9439, -11,4005, +58,4513; therefore, the matrix E

1ρ  
isn’t a density matrix. With this matrix, and according to the expressions (5) and (6), and the values 008,0=ε  and 005,0'=ε , 
respectively, are calculated the matrices 

ερ  and 
'ερ . 

 



















+−−++++
+−+−−−−
−++−+++
−++−−++

=

3677,01227,01341,01255,01439,01471,00421,0
1227,01341,01796,00119,01619,00890,00700,0
1255,01439,00119,01619,02268,00369,00753,0
1471,00421,00890,00700,00369,00753,02259,0

iii
iii
iii
iii

ερ
,                    (12) 

 
which is a density matrix because it is Hermitian, it has trace equal to one and eigenvalues non-negative: +0,0231, +0,1044, +0,1568, 
+0,7156. 
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+−−++++
+−+−−−−
−++−+++
−++−−++

=

3236,00767,00838,00785,00899,00919,00263,0
0767,00838,02060,00075,01012,00556,00437,0
0785,00899,00075,01012,02355,00230,00470,0
0919,00263,00556,00437,00230,00470,02349,0

'

iii
iii
iii
iii

ερ
,                      (13) 

 
which have all their eigenvalues non-negative: +0,1082, 
+0,1590, +0,1917, +0,5410. 

On the other hand, using the Peres-Horodecki criterion, 
[5, 6], establishing, in the case of 44×  matrices, a necessary 
and sufficient condition for separability, we find that this 
isn’t satisfied, neither by matrix 

ερ  nor the matrix 
'ερ , 

because their partial transposed matrices, )( ερPT  and 

)( 'ερPT , present1 a negative eigenvalue: -0,1966 and -
0,0291, respectively; thus, both matrices are entangled based 
on the Peres-Horodecki criterion. Moreover, observing the 
mathematical expression in Equation 8, with 

'ερ  and 
ερ  

entangled, we see a matrix that seems to represent correctly 
certain physical state. According to the general 
considerations [7], to attribute physical meaning to 
mathematical objects (in this case matrices) of a physical 
model it should be possible to put them in correspondence 
with the physical system considered, but, for that, it should 
be shown two things: (i) that the matrix 

ερ  in Equation 8 it 
may be constructed from the application of unitary 
operations to the thermal equilibrium density matrix, and (ii) 
that the parameter σ  corresponds to the experimental 
conditions in some specific implementation of NMR 
quantum computing. In this case, it’s not possible to establish 
such correspondence because the parameter σ  was obtained 
without taking into consideration experimental values, but 
through the use of a mathematical property of states 
considered: the state (8) is a result of a mathematical ‘trick’. 

It still remains to show that the assumption considered, 
that there are two entangled matrices associated with a 
matrix E

1ρ , has justification. For that, we need to show that 
there are Hermitian matrices E

1ρ  whose eigenvalues can 
satisfy the relation (7) for two numbers ε  and 'ε  and then 
seek, on the set of extended pseudo-pure density matrices 
which may be generated, those that are entangled; this was 
been numerically. 

Let’s consider2  the −ε Maps corresponding to values 
005,0=ε  and 008,0=ε , Figures 1 and 2, those that 

present (when superposed) non-null intersection, for 
example, to the interval >+−< 55,60 . Having the Figures 
non-null intersection it means that the condition in Equation 
7 is satisfied: there are numbers which define a single 
extended matrix E

1ρ  to the two parameter’s values, so that 
the extended pseudo-pure matrices generated are density 
matrices. The matrix C  considered in Equation 9 has, 
precisely, its elements in an interval in which there is non-
null intersection of the two −ε Maps. It is important to point 

1 The eigenvalues of )( ερPT are: -0,1966, +0,2993, +0,3554, +0,5419, and 

the eigenvalues of )( 'ερPT  are: -0,0291, +0,2808, +0,3159, +0,4324. 

out that, unlike the examples presented in [1], here we have 
a case of mathematical entanglement due to the fact that the 
parameter σ  doesn’t have a physical meaning. 

 

 
FIGURE 1. −ε Map corresponding to value 005,0=ε . 

 
Ten thousand extended matrices had been generated, 
indirectly, through the definition of their expansion 
coefficients in a basis of Pauli density matrices, as it’s 
described on Appendix 1. Among the density matrices with 
the shape of a pseudo-pure matrix that had been generated, 
the map shows, in a color scale, the distribution and 
percentage of those that are entangled. 
 

 
FIGURE 2. −ε Map corresponding to value 008,0=ε . 

2 See the appendix 1 for the corresponding definition. 
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As in Figure 1, here are considered the same scales and limit 
values in the two coordinate directions. 
 
 
VI. CONCLUSIONS 
 
It had been constructed a pseudo-pure matrix (Equation 8 or 
13) from two extended pseudo-pure matrices (Equations 5, 
6) that are entangled according to Peres-Horodecki criterion, 
showing that the entanglement associated with the pseudo-
pure matrix isn’t physical, but only mathematical, because it 
includes a parameter whose value doesn’t arise of 
experimental values but that results of a mathematical ‘trick’, 
opposed to the corresponding to a physical state with the 
same shape. 
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APPENDIX 1. DEFINITION OF A −ε MAP 
 
We presented a definition related with counting and 
distribution of entangled pseudo-pure matrices in a certain 
numerical context. Let’s call ’ −ε Map’ to a map that 
determines, in a scale of colors, for a certain value of ε  and 
when the condition εελ 4/)1( −−≥  is satisfied by each 
matrix E

1ρ  generated, the fraction of pseudo-pure matrices 

ερ  identified by the Peres-Horodecki criterion (in the case 
of 44×  matrices and when it doesn’t identify separability) 
which are found in each interval >< maxmin , CC  (associated 
with some point on the map) where are randomly defined, 
fifteen real numbers jiC ,

 that are considered as independent 
coefficients of the expansion (in a basis of Pauli density 
matrices) of a particular extended matrix E

1ρ , which 
generates, through (4), a matrix 

ερ . 
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