A case of spurious quantum entanglement originated by a mathematical property with a nonphysical parameter

QVO NON ASCENDAM ?

J. D. Bulnes ${ }^{1}$, F. A. Bonk ${ }^{2}$
${ }^{1}$ Grupo de Mecânica Quântica, Informação Quântica e Física Aplicada, Universidade Federal do Amapá, Rod. Juscelino Kubitschek, Km. 2, Jardim Marco Zero, CEP. 68903-419, Macapá, AP, Brazil.
${ }^{2}$ Instituto de Ciências Exatas e Tecnologia, Universidade Paulista, Rua Miguel Guidotti, 405, Egisto Ragazzo, CEP.13485-342, Limeira, SP, Brazil.
E-mail: bulnes@unifap.br

(Received 29 April 2014, accepted 17 November 2014)

Abstract

In this paper it's build a 4×4 entangled matrix with the shape of a pseudo-pure matrix, $\rho_{\varepsilon}=(1-\varepsilon) I_{4} / 4+\varepsilon \rho_{1}$, in which the matrix ρ_{1} also is entangled. The entanglement was identified through the Peres-Horodecki criterion, but such entanglement, as it's shown, it's not physical, but only mathematical.

Keywords: Quantum entanglement, Extended pseudo-pure matrix.

Resumen

En este artículo se construye una matriz entrelazada 4×4 con la forma de una matriz seudopura $\rho_{\varepsilon}=(1-\varepsilon) I_{4} / 4+\varepsilon \rho_{1}$ en la cual la matriz ρ_{1} también está entrelazada. El entrelazamiento fue identificado a través del criterio de PeresHorodecki, pero tal entrelazamiento, como se muestra, no es físico, sino únicamente matemático.

Palabras clave: Entrelazamiento cuántico, Matriz pseudo-pura extendida.

PACS: 03.65.-w; 03.65.Ud; 03.67.Mn
ISSN 1870-9095

I. INTRODUCTION

On this section, we briefly reviewed the concept of extended pseudo-pure matrix [1], to later construct a particular entangled matrix which includes a matrix that is also entangled.

Considering only the mathematical form (but not the origin) of a pseudo-pure matrix, [2, 3, 4], in the case of 4×4 matrices, we write:

$$
\begin{equation*}
\rho_{\varepsilon}=(1-\varepsilon) \frac{I_{4}}{4}+\varepsilon \rho_{1}, \tag{1}
\end{equation*}
$$

in which:
ε is a parameter with value in the interval $<0,1\rangle, I_{4}$ is the identity matrix and ρ_{1} is a density matrix.

A generalization of the kind of the above matrix (as it was performed in [1]) consists of maintaining the form pseudo-pure and including a Hermitian matrix ρ_{1}^{E} that has (at least) a negative eigenvalue in the place of the density matrix ρ_{1}; then we write:

$$
\begin{equation*}
\rho_{\varepsilon}^{E}=(1-\varepsilon) \frac{I_{4}}{4}+\varepsilon \rho_{1}^{E} . \tag{2}
\end{equation*}
$$

It's evident that if the matrix ρ_{1}^{E} is chosen arbitrarily, the corresponding matrix ρ_{ε}^{E} not necessarily will be "density matrix" type, then, to assure that ρ_{ε}^{E} is always a density matrix, it's necessary to impose some condition.

Considering the fact that ρ_{ε}^{E} and ρ_{1}^{E} commute and denominating λ_{ε} and λ_{1} to eigenvalues of these matrices defined to the set de eigenvectors in common, one comes to the following relation,

$$
\begin{equation*}
\lambda_{\varepsilon}=(1-\varepsilon) / 4+\varepsilon \lambda_{1} . \tag{3}
\end{equation*}
$$

Therefore, imposing that $\lambda_{\varepsilon} \geq 0$, one gets,

$$
\begin{equation*}
\lambda_{\varepsilon} \geq-(1-\varepsilon) / 4 \varepsilon \tag{4}
\end{equation*}
$$

The previous result would be useful if we could choose matrices ρ_{1}^{E} through their eigenvalues: if the previous

J. D. Bulnes, F. A. Bonk

relation is satisfied, the corresponding matrix ρ_{ε}^{E} is a density matrix. Among the density matrices thus generated some are entangled, but it is only a mathematical entanglement (and not a physical entanglement), as it was shown in [1].

II. CONSTRUCTING A MATRIX WITH ENTANGLEMENT 'IN WHOLE AND IN PART'

Hereafter extends the context discussed in [1] and then to construct a case of mathematical entanglement. Let us consider two entangled pseudo-pure matrices ρ_{ε} and $\rho_{\varepsilon^{\prime}}$ that are constructed starting from the same extended pseudo-pure matrix ρ_{1}^{E}, having each one distinct value of its parameter, ε and ε^{\prime}, that by now will be considered arbitrary. Then, it can be written,

$$
\begin{gather*}
\rho_{\varepsilon}=(1-\varepsilon) \frac{I_{4}}{4}+\varepsilon \rho_{1}^{E} . \tag{5}\\
\rho_{\varepsilon^{\prime}}=\left(1-\varepsilon^{\prime}\right) \frac{I_{4}}{4}+\varepsilon^{\prime} \rho_{1}^{E} . \tag{6}
\end{gather*}
$$

The matrix ρ_{1}^{E} is chosen, necessarily, through its eigenvalues, λ, all of them satisfy the condition,

$$
\begin{equation*}
\lambda \geq-\min \left\{(1-\varepsilon) / 4 \varepsilon,\left(1-\varepsilon^{\prime}\right) / 4 \varepsilon^{\prime}\right\} . \tag{7}
\end{equation*}
$$

Let's suppose that $\varepsilon>\varepsilon^{\prime}$; then, there is σ in the open interval $\langle 0,1\rangle$, so that $\varepsilon^{\prime}=\sigma \varepsilon$, and the Equations (5) and (6) can be suitably combined to obtain:

$$
\begin{equation*}
\rho_{\varepsilon^{\prime}}=(1-\sigma) \frac{I_{4}}{4}+\sigma \rho_{\varepsilon} \tag{8}
\end{equation*}
$$

that maintains the pseudo-pure form and where the Hermitian matrix ρ_{1}^{E} don't appear anymore; we emphasize that in the expression (8) both $\rho_{\varepsilon^{\prime}}$ and ρ_{ε} are density matrices.

Hereafter is presented a numerical example of matrices of the type described above. In the open interval $<-60,+55>$, which was numerically identified, are selected randomly several sets of fifteen numbers, $C_{i, j}$, to which we add the element $C_{1,1}$, with fixed value equal to one. One of these sets of numbers was ordered in the following matrix,

$$
C=\left(\begin{array}{cccc}
1 & -14,6958 & -21,4681 & -23,6227 \tag{9}\\
+18,4872 & -29,9316 & +39,7585 & -53,4624 \\
+9,1401 & +33,7877 & -51,0052 & -53,6334 \\
-11,8384 & +52,3318 & +39,8948 & +23,4070
\end{array}\right) .
$$

The numbers $C_{i, j}$, elements of the previous matrix, will be considered as independent coefficients of the expansion of a matrix ρ_{1}^{E} at the basis of Pauli density matrices. Then it's written,

$$
\begin{equation*}
\rho_{1}^{E}=\frac{1}{4} \sum_{i, j=1}^{4} C_{i, j} \sigma_{i} \otimes \sigma_{j} \tag{10}
\end{equation*}
$$

finding the Hermitian matrix,

$$
\rho_{1}^{E}=\left(\begin{array}{cccc}
-2,7635 & +9,4090-4,6067 i & -8,7438+11,1233 i & +5,2684-18,3865 i \tag{11}\\
+9,4090+4,6067 i & -2,6557 & -20,2342+1,4927 i & +17,9874-15,6934 i \\
-8,7438-11,1233 i & -20,2342-1,4927 i & -8,5478 & -16,7569+15,3407 i \\
+5,2684+18,3865 i & +17,9874+15,6934 i & -16,7569-15,3407 i & +14,9670
\end{array}\right),
$$

that has trace equal to one and presents the following eigenvalues: $-28,1068,-17,9439,-11,4005,+58,4513$; therefore, the matrix ρ_{1}^{E} isn't a density matrix. With this matrix, and according to the expressions (5) and (6), and the values $\varepsilon=0,008$ and $\varepsilon^{\prime}=0,005$, respectively, are calculated the matrices ρ_{ε} and $\rho_{\varepsilon^{\prime}}$.

$$
\rho_{\varepsilon}=\left(\begin{array}{cccc}
+0,2259 & +0,0753-0,0369 i & -0,0700+0,0890 i & +0,0421-0,1471 i \tag{12}\\
+0,0753+0,0369 i & +0,2268 & -0,1619+0,0119 i & +0,1439-0,1255 i \\
-0,0700-0,0890 i & -0,1619-0,0119 i & +0,1796 & -0,1341+0,1227 i \\
+0,0421+0,1471 i & +0,1439+0,1255 i & -0,1341-0,1227 i & +0,3677
\end{array}\right)
$$

which is a density matrix because it is Hermitian, it has trace equal to one and eigenvalues non-negative: $+0,0231,+0,1044,+0,1568$, $+0,7156$.

$$
\begin{array}{r}
\quad \text { A case of spurious quantum entanglement originated by a mathematical property with a no } \tag{13}\\
\rho_{\varepsilon^{\prime}}=\left(\begin{array}{cccc}
+0,2349 & +0,0470-0,0230 i & -0,0437+0,0556 i & +0,0263-0,0919 i \\
+0,0470+0,0230 i & +0,2355 & -0,1012+0,0075 i & +0,0899-0,0785 i \\
-0,0437-0,0556 i & -0,1012-0,0075 i & +0,2060 & -0,0838+0,0767 i \\
+0,0263+0,0919 i & +0,0899+0,0785 i & -0,0838-0,0767 i & +0,3236
\end{array}\right),
\end{array}
$$

which have all their eigenvalues non-negative: $+0,1082$, $+0,1590,+0,1917,+0,5410$.

On the other hand, using the Peres-Horodecki criterion, [5, 6], establishing, in the case of 4×4 matrices, a necessary and sufficient condition for separability, we find that this isn't satisfied, neither by matrix ρ_{ε} nor the matrix $\rho_{\varepsilon^{\prime}}$, because their partial transposed matrices, $T_{P}\left(\rho_{\varepsilon}\right)$ and $T_{P}\left(\rho_{\varepsilon^{\prime}}\right)$, present ${ }^{1}$ a negative eigenvalue: $-0,1966$ and 0,0291 , respectively; thus, both matrices are entangled based on the Peres-Horodecki criterion. Moreover, observing the mathematical expression in Equation 8, with $\rho_{\varepsilon^{\prime}}$ and ρ_{ε} entangled, we see a matrix that seems to represent correctly certain physical state. According to the general considerations [7], to attribute physical meaning to mathematical objects (in this case matrices) of a physical model it should be possible to put them in correspondence with the physical system considered, but, for that, it should be shown two things: (i) that the matrix ρ_{ε} in Equation 8 it may be constructed from the application of unitary operations to the thermal equilibrium density matrix, and (ii) that the parameter σ corresponds to the experimental conditions in some specific implementation of NMR quantum computing. In this case, it's not possible to establish such correspondence because the parameter σ was obtained without taking into consideration experimental values, but through the use of a mathematical property of states considered: the state (8) is a result of a mathematical 'trick'.

It still remains to show that the assumption considered, that there are two entangled matrices associated with a matrix ρ_{1}^{E}, has justification. For that, we need to show that there are Hermitian matrices ρ_{1}^{E} whose eigenvalues can satisfy the relation (7) for two numbers ε and ε^{\prime} and then seek, on the set of extended pseudo-pure density matrices which may be generated, those that are entangled; this was been numerically.

Let's consider ${ }^{2}$ the ε-Maps corresponding to values $\varepsilon=0,005$ and $\varepsilon=0,008$, Figures 1 and 2 , those that present (when superposed) non-null intersection, for example, to the interval $<-60,+55>$. Having the Figures non-null intersection it means that the condition in Equation 7 is satisfied: there are numbers which define a single extended matrix ρ_{1}^{E} to the two parameter's values, so that the extended pseudo-pure matrices generated are density matrices. The matrix C considered in Equation 9 has, precisely, its elements in an interval in which there is nonnull intersection of the two ε-Maps. It is important to point

[^0]out that, unlike the examples presented in [1], here we have a case of mathematical entanglement due to the fact that the parameter σ doesn't have a physical meaning.

FIGURE 1. ε-Map corresponding to value $\varepsilon=0,005$.

Ten thousand extended matrices had been generated, indirectly, through the definition of their expansion coefficients in a basis of Pauli density matrices, as it's described on Appendix 1. Among the density matrices with the shape of a pseudo-pure matrix that had been generated, the map shows, in a color scale, the distribution and percentage of those that are entangled.

FIGURE 2. ε - Map corresponding to value $\varepsilon=0,008$.

[^1]As in Figure 1, here are considered the same scales and limit values in the two coordinate directions.

VI. CONCLUSIONS

It had been constructed a pseudo-pure matrix (Equation 8 or 13) from two extended pseudo-pure matrices (Equations 5, 6) that are entangled according to Peres-Horodecki criterion, showing that the entanglement associated with the pseudopure matrix isn't physical, but only mathematical, because it includes a parameter whose value doesn't arise of experimental values but that results of a mathematical 'trick', opposed to the corresponding to a physical state with the same shape.

REFERENCES

[1] Bulnes, J. D. \& Peche, L., Entrelazamiento cuántico espurio con matrices seudopuras extendidas 4 por 4, Revista Mexicana de Física 57, 188 (2011).
[2] Gershenfeld, N. A. \& Chuang, I. L., Bulk spin-resonance quantum computation, Science 275, 350 (1997).
[3] Cory, D. G., Fahmy, A. F., \& Havel, T. F., Ensemble quantum computing by NMR spectroscopy, Proc. Nat. Acad. Sci. USA 94, 1634-1639 (1997).
[4] Bulnes, J. D., Bonk, F. A., Sarthour, R. S, de Azevedo, E. R., Freitas, J. C. C., Bonagamba, T. J., \& Oliveira, I. S.,

Quantum information processing through nuclear magnetic resonance, Brazilian Journal of Physics 35, 1 (2005).
[5] Peres, A., Separability criterion for density matrices, Physical Review Letters 77, 1413 (1996).
[6] Horodecki, M, Horodecki, P., Horodecki, R., Separability of mixed states: necessary and sufficient conditions, Physics Letters A 223, 1-8 (1996).
[7] Prugovecki, E., On a theory of measurement of incompatible observables in quantum mechanics, Canadian Journal of Physics 45, 2173-2219 (1967).

APPENDIX 1. DEFINITION OF A $\boldsymbol{\varepsilon}$ - MAP

We presented a definition related with counting and distribution of entangled pseudo-pure matrices in a certain numerical context. Let's call ' ε-Map' to a map that determines, in a scale of colors, for a certain value of ε and when the condition $\lambda \geq-(1-\varepsilon) / 4 \varepsilon$ is satisfied by each matrix ρ_{1}^{E} generated, the fraction of pseudo-pure matrices ρ_{ε} identified by the Peres-Horodecki criterion (in the case of 4×4 matrices and when it doesn't identify separability) which are found in each interval $<C_{\text {min }}, C_{\text {max }}>$ (associated with some point on the map) where are randomly defined, fifteen real numbers $C_{i, j}$ that are considered as independent coefficients of the expansion (in a basis of Pauli density matrices) of a particular extended matrix ρ_{1}^{E}, which generates, through (4), a matrix ρ_{ε}.

[^0]: ${ }^{1}$ The eigenvalues of $T_{P}\left(\rho_{\varepsilon}\right)$ are: $-0,1966,+0,2993,+0,3554,+0,5419$, and the eigenvalues of $T_{P}\left(\rho_{\varepsilon^{\prime}}\right)$ are: -0,0291, +0,2808, +0,3159, +0,4324.

[^1]: ${ }^{2}$ See the appendix 1 for the corresponding definition.

